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Abstract: A novel dioxane nucleoside for chemotherapy, 2(R)-(5-fluorouracil-l-yl)- 
5(R)-hydroxymethyl-3(R)-(uracil-l-yl)-1,4-dioxane and its 2(S)-isomer, were 
conveniently synthesized from uridine with several steps including periodate 
oxidation, partial reduction to form hemiacetals, and glycosidation of the second base, 
5-fluorouracil, using stannic chloride as the catalyst. © 1997 Elsevier Science Ltd. 

Recently, many reports have been published regarding anti-viral nucleosides consisting of an acyclic 

chain (acyclonucleosides), oxolane or its positional isomers, thiolane, dioxolane or oxathiolane, oxathiane or 

dithiane, and dioxane as the sugar moiety 1-8). In an attempt to develop a novel type of nucleoside for 

therapeutic use, we have synthesized a form in which the sugar moiety is altered from D-ribose to dioxane 

having another aglycone in the ring (7a and 7b), as shown in Figure I. 
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Figure 1 

The seco-nucleoside monoaldehyde, [seco-uridine-2'-aldehyde, or 2-O- { 2(R)-(uracil- 1 -yl)acetaldehyde- 

2-yl }glycerol (3)], was selected as the starting material, as shown in Figure 2. It was synthesized from uridine 

(1) in a more than 80% yield with a small amount of fully reduced seco-uridine using sodium periodate 

oxidation 9), followed by treatment with sodium borohydride in a saturated boric acid aqueous solution in the 

presence of acetic acid (0.3 M) 10). The monoaldehyde 3 was dissolved in dry pyridine and acetic anhydride: 

6841 



6842 

was added to the solution and the mixture was allowed to stand overnight to give an epimeric mixture of 2- 

acetoxy-5(R)-acetoxymethyl-3(R)-(uracil-l-yl)-1,4-dioxane (5). The intramolecular cyclization of 3 is at 

equilibrium to provide two sets of hemiacetals (4), one with an equatorial configuration of the hydroxymelhyl 

group at the 5 position, and the other with an axial configuration of the hydroxymethyl group, the absolute: 
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Figure 2. 

configurations of which at position 5 are R and S, respectively. The hemiacetal formation mainly occurred 

between the 2'-aldehyde and 3'-hydroxy group with a small amount of 5'-hydroxy group cyclized produm in 3, 

which was estimated from products analysis after the glycosidation. Thus, the hydroxymethyl group 

originating from the 3'-carbon of uridine participated in the hemiacetals formation is more stable than the other 

hydroxymethyl group participating in ring formation, that is, formation of an equatrial hydroxymethyl having 

dioxane ring is more favorable for the reaction than an axial hydroxymethyl group. A solution of stannic 
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chloride in acetonitrile and bis-trimethylsilyl-5-fluorouracill 1> was then added to a solution of the mixture 5 in 

acetonitrile at room temperature to give a new type of nucleoside as a mixture of 5(R)-acetoxymethyl-2(R)-(5- 

fluorouracil- l-yl)-3(R)-(uracil- 1 -yl)- 1,4-dioxane (6a) and 5(R)-acetoxyoxymethyl-2(S)-(5-fluorouracil- 1 -yl)- 

3(R)-(uracii-l-yl)-1,4-dioxane (6b) (the ratio, R/S=I 0/1) with other form(s) (less than I%). After separation of 

each isomer by silica gel column chromatography, compound 6a 121 was recrystallized from ethanol-ether to 

afford white needles, m.p., 232-236 °C (dec.) in a 30% yield from the monoaldehyde (3) (Figure 2). 

Deprotection of the acetyl group was carried out with ammonia-methanol to afford the desired nucleosides, 

2(R)-(5-fluorouracil- I -yl)-5(R)-hydroxymethyl-3(R)-(uracil- l-yl),- 1,4-dioxane (7a), m.p. 253-256 °C (dec .) 

and 2(S)-(5-fluorouracil-I-yl)-5(R)-hydroxymethyl-3(R)-(uracil-l-yl)-1,4-dioxane (Tb). The structure of 7a 

could be determined on the basis of the data of X-ray crystallographic analysis TM, as well as spectral and 

elemental analysis 14 I. Nuclear Overhauser effects observed between H3 and H5 in IH-nmr indicate that the 

two substituents, hydroxymethyl and uracil, are equatorial. The circular dichroism spectrum of 7a in water 

had a very large [0] value at 270 nm suggesting that both bases have an anti conformation. However, the 

amount of 7b was too small to allow its elucidation. Acid hydrolysis of 7a was carried out in hydrochloric 

acid (6 mol/dm 3) at 110 °C for 14 h. The result showed that the two glycosidic bonds were both degraded to 

produce 5-fluorouracil and uracil, in an approximately I: I molar ratio. Thus, the stability of both N-glycosidic 

bonds is similar regarding resistance to acid hydrolysis. Dissociation constants of the NH protons of FU and U 

in 7a were estimated to be 7.2 and 9.5, respectively, by pH titration with uv spectroscopy in a buffer 

solution 15). 

It has been shown that simple dioxane nucleosides (with adenine, 5-fluorouracil, or guanine as the basel 

do not exert any anti-viral activity 6a, 8a). The reason might be that the distance and/or their configuration 

between the primary hydroxymethyl group and the base in the nucleoside are not suitable, since they are in a 

cis configuration. Therefore, an axial position for one of substituents could be favorable in the activity of 

dioxane nucleoside. 

It is noteworthy that when naturally occurring ribonucleosides such as adenosine, cytidine, guanosine, 

and uridine are used as the starting material in our synthetic method, a total 16 combinations of pairs of bases 

in 7 can be generated. Moreover, when 5-fluorouridine, inosine and ribothymidine are included in the starting 

material, the possibilities increased to 49. Synthesis of some of these is now in progress in our laboratory 

along with assessment of the anti-viral and anti-tumor activity. 
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